
We at Svet elektronike are proud on 
what we do since 1994!

Slovenian website

www.svet.el.si

English website

www.svet-el.si/english

Brian's corner

The FTDI EVE 
graphics controller (2)



REVIJA ZA ELEKTRONIKO, AVTOMATIKO, RA UNALNIŠTVO IN TELEKOMUNIKACIJE

1stran cenik.ai   1   3.11.2015   14:15:18

Media KIT - Svet elektronike magazine

ENGLISH

 www.svet-el.si/download/Media KIT_UK SE.pdf

REVIJA ZA AVTOMATIZACIJO, ROBOTIKO, STROJNIŠTVO IN INFORMATIKO

1stran cenik.ai   2   3.11.2015   14:13:50

Presentation of Svet mehatronike magazinePresentation of Svet mehatronike magazine

ENGLISH

 www.svet-el.si/download/ Media KIT_UK SM.pdf

MAGAZINE FOR AUTOMATION, ROBOTICS, MECHANICS & IT

Brian's corner

www.svet-el.si/english

Article on the web site

Download programs 
and
Download PDF of the article

AX elektronika d.o.o.AX elektronika d.o.o.
Špruha 33Špruha 33

SI-1236 TrzinSI-1236 Trzin
Slovenia / EuropeSlovenia / Europe

00386 1 549 14 0000386 1 549 14 00
www.svet-el.siwww.svet-el.si
stik@svet-el.sistik@svet-el.si



SVET ELEKTRONIKE     3    www.svet-el.si/englishwww.svet-el.si/english

PROGRAMMING

Basic Hook-up and Programming  
Before choosing which display module that you wish to 
purchase, you should look back at Table 1 in Part 1 of the 
series, to determine which of the three company's modules 
best serve your requirements. When I first read about the 
FTDI EVE controller, Mikroelektronika made the only EVE-
powered TFT touchscreen modules available:  the 4.3” 
ConnectEVE. So, I started out by purchasing a few of these 
and designing projects around them. Shortly thereafter, 
FTDI themselves started selling two different series of 
evaluation modules: the VM800B series that comes with 
a mounting bezel and full-size control PCB, and the 
VM800C series which contain a credit card-sized controller 
PCB and can be purchased with or without a TFT display. 
The VM800C modules come without a bezel, and the TFT 
display has no mounting tabs either.

In this article I will use one of the FTDI 4.3” VM800B modules 
to demonstrate the operation of the EVE controller. Later 
in the series, I'll describe one of the projects I designed/
built using the somewhat more compact Mikroelektronika 
ConnectEVE modules ( the first ones I purchased).

Module Hook-up
If you think like me, the physical hook-up of TFT display 
modules to your favourite MCU is probably the least of your 
worries. My prime consideration is how difficult it will be to 
write or obtain the necessary software drivers to interface 
such display modules with the Atmel AVR MCU family that 
I generally use. This consideration is further complicated 
by the fact that I generally write programs using Bascom/
AVR and not C/C++. While I hate to admit it, it appears 
that the majority of drivers for peripheral devices/chips are 
supplied by the vendors in the form of C/C++ libraries. Part 
of the reason for this is that AVR-based Arduino boards 
are extremely popular and the Arduino is programmed in 
C/C++. Arduino programs or “sketches” are basically C/
C++ code which has been “wrapped” by a user-friendly IDE 
which hides a lot of the complexity of C/C++.

In the case of the FT800 EVE controller, FTDI decided to 
write both their drivers and example programs in C/C++. 
The Arduino compiler will handle this just as well as it 
will handle “sketches” written in the Arduino simplified 
C format. If you are accustomed to writing Arduino 
“sketches” but are not a C/C++ expert, you will find the 
FTDI drivers and example programs rather hard to follow. 

As a long-time Bascom/AVR programmer, this C/C++ 
code was even more difficult for me to follow! Therefore, 
I decided it would be too daunting a task to convert all of 
this code to Basic, and instead decided to join the large 
world-wide Arduino “club”, and write code for my FTDI 
EVE-based projects as Arduino “sketches”.

To save you from having to “re-invent the wheel”, what I 
have done is carefully go through FTDI's example code, 
remove as much extra code as possible, and simplify what 
remained as much as possible. If a Bascom/AVR fan like 
myself can successfully use these FTDI EVE modules in 
projects, you should be able to do so as well!

 So, let's see how we can hook up our EVE-based display 
to an AVR Mega328. The interface is just a standard SPI 
interface, with a couple of extra lines to handle the board 
Reset/Power-down and an optional interrupt. Depending 
upon which type of module you have, the logic levels 
required will be either strictly 3.3V or 3.3/5V switchable. 
See Table 1 in Part 1 to determine which is applicable to 
your board. If you have a 3.3V only module, but are using 
an MCU powered by 5V (i.e. an Arduino Uno), then you 
will have to use some level-shifting circuitry. I described a 
simple resistive logic level converter in Figure 1 of Part 1, 
which is simple and works well for this purpose.

In either case, the wiring between the display module 
and your MCU is shown in Table 1 in FTDI's AN246 
Application note titled “VM800CB_Sample_App_
Arduino_Introduction” REF. 1

The MCU pin definitions shown here are the Arduino 

The FTDI EVE graphics controller (2)
In Part 1 of this series I covered the basic features and advantages of the FTDI FT800 EVE graphics controller 
chip. In doing so, I mentioned several other methods of obtaining color TFT touch-screen functionality, including 
both “dumb” TFT displays that interface to your MCU via an 8/16 bit parallel port, as well as “intelligent” TFT 
display modules such as those sold by 4D Systems. I feel that FTDI's EVE solution is both cost-effective and 
lends itself well to being interfaced with modest 8-bit MCUs, like the Atmel Mega328P that is found on many of 
the popular Arduino boards (i.e. the Uno). This month I'm going to show the reader how to get started using 
some of the EVE-powered TFT touch-screen modules that are currently available.

o
he
es
he
E-
3”
se
r,

of
h

he
er
y

es that are currently available.

o
e
s
e
-
”
e
,
f 
h
e
r

Photo 1



4     SVET ELEKTRONIKE www.svet-el.si/englishwww.svet-el.si/english

PROGRAMMING

definitions- not the 
same as the actual port 
designations used by 
Atmel (i.e. PortB.5 ). If 
you are using an Arduino 
board this table will be 
easy to follow. If you are 
using some other board 
with a Mega328 on it, 
and want to know the 
connections based upon 
Atmel's designations, 
then check out Table 1 
below.

It is obvious that 
EVE's SPI lines should 
interconnect with the AVR's SPI lines. In the case of the 
*PD and optional *INT lines, these could connect to any 
other available I/O port lines, but the FTDI drivers and 
example programs are configured to use the specific I/O 
pins shown in Figure 1. When I discuss programming a bit 
later on, I'll show you where you can find these definitions 
in the program code itself, in case you wish to use other 
I/O pins rather than the defaults.

If you have a Mikroelektronika ConnectEVE display board, 
you will have to supply it with a regulated 3.3 volt power 
supply. I measured the current that this board draws, and 
found it to be about 150 mA under normal operating 
conditions. A Microchip MCP1700-3302 is an ideal LDO 
regulator to use for this, so long as you don't exceed its 6V 
maximum input voltage limit. For higher input voltages you 
could use a MCP1702-3302 instead, but you should make 
sure that you don't exceed its power dissipation limits if 
your input voltage is too high. Of course there are many 
other LDO regulators you could choose, but I like these 
as they are available in a TO-92 package, which is easy to 
handle/solder (in other words it is not a tiny SMT part that 
I can barely see/handle!)

If you have an FTDI VM800B module, you can supply it 
with either 5V or 3.3V. Usually you would choose the same 
voltage that you are using for your MCU. If you choose 5V, 
you can supply 5V to this board in 3 ways:
• via the micro USB socket provided on the board  and 

jumper 2 & 3 of SW1
• via CN1, (which is a 2 pin JST connector)  and jumper 

1 & 2 of SW1
• via pin 7 of the J5 interface header (SW1 jumper 

position doesn't matter)

If you choose to supply the VM800B with 3.3V, you can do 
it in the following ways:
• via CN1 ( the 2 pin JST connector) and short pins 7&8 

of J5 and jumper pins 1&2 of SW1.
• Via pins 7&8 of the J5 interface header. (SW1 jumper 

position doesn't matter in this case)

If you are using the Mikroelektronika ConnectEVE display 

module, there is a warning I'd like to mention. This 
module contains both an inline 10 pin header as well as a 
2X5 header. I recommend that you use the 10 pin header. 
The 2X5 header contains the same signals, which are silk-
screened on the board. However, if you look closely at Photo 
1, at the location of the arrow which normally designates 
Pin 1, you will see that it is actually pointing to Pin 2. If you 
were to wire up your host MCU board expecting the  *PD 
signal to be on Pin1, etc., all of your connections would 
be wrong! When I contacted Mikroelektronika about this, 
they claimed  that their drawing was correct- if you placed 
the 2X5 header on the front side of the module. However, 
as I pointed out to them, this is impossible as there is not 
enough depth to allow a ribbon cable plug to be mounted 
on the front- assuming that the module is mounted on a 
panel of some sort, which would normally be the case. 
Luckily, I used the 10 Pin header when I first tried out the 
module, and on my next project, when I decided to use the 
2X5 header, I checked out my interconnect wiring with an 
ohmmeter, and noticed the discrepancy before I powered 
things up.   

At this point you are ready to load the Mega328P with an 
example program to test out the display. Photo 2 shows 
my interconnect wiring between the FTDI VM800B display 
and an Arduino Uno.

Initial Test Program
At this point you have a few choices about which program 
to load to test out the display. Assuming that you are using 
an Atmel Mega328P (whether on an Arduino board or 
not), you can try the following:
• The program example supplied by FTDI as part of their 

application note AN246, mentioned earlier. A link to 
this can be found as REF2 in the reference section of 
this article.  

• A simple program which I have written which is based 
upon FTDI's code, but highly simplified to make it 
easier for the beginner to follow. This can be found on 
SE's website and is an Arduino sketch titled “FT800_
Basic_Setup” and includes the necessary FTDI C 
support library files.

If you decide to go with option 1, and use the FTDI example 
program, it is very important that you read section 2.2.1 
and 2.2.2 of AN246 where it instructs you how to modify 
the source code to:
•  A) match your display size
•  B) pick a set of demo routines to run. Note that, by 

default, none  of the demo routines are pre-selected, so 
nothing will show up on the screen if you fail to do this!

If you choose option 2, my program will simply put 
up a “splash” screen without you having to make any 
customizations to the code. You just compile and download 
it from within the Arduino IDE. Of course you have to be 
somewhat familiar with the Arduino, and have set up the 
IDE for the Arduino Uno board and have chosen the serial 
port number that its USB interface has been assigned to.

EVE Controller 
module 

Mega328  
MCU board 

SCK PortB.5 

MOSI PortB.3 

MISO PortB.4 

*CS PortB.2 

*PD PortD.4 

*INT PortD.3 

GND GND 

Table 1: EVE controller hookup using 
Atmel pin designations



SVET ELEKTRONIKE     5    www.svet-el.si/englishwww.svet-el.si/english

PROGRAMMING

Apart from putting up a simple “splash” screen, this 
program also opens the Mega328P's serial port (at 9600 
baud) and sends out messages to indicate that the program 
has started and that the start screen has been displayed. 
It also places two button “widgets” on the screen, and 
stays in a polling loop waiting to see if the user has pressed 
either of the two buttons. When either button is pressed, 
a message will be sent out the serial port indicating which 
button was pressed.
• If you don't see the splash screen shown in Photo 3 

at power-up, but you can see the serial port messages 
mentioned above, then you have either:

• a interconnection wiring problem
• a problem with the resistive level-shifter circuit which 

must be used if you are using a Mega328P at a Vcc of 
5V and an EVE module that requires  3.3V logic level 
signals. (i.e. the Mikroelektronika ConnectEVE or 4D 
Systems FT843)

• improper power supply to the EVE display module
• a bad display module (unlikely).

It all has gone smoothly so far, you will probably want 
to start looking closely at the program code to see what 
you need to understand in order to use these displays. If 
you take a look at the FTDI program that comes with the 
AN246, one of two things will happen. If you are an expert 
C/C++ programmer and have read the 238 pages of the 
FT800 Programmer's Guide, you will probably be able 
to follow it reasonably well. Otherwise, you will probably 
not be able to make much sense out of it. Even if you are 
reasonably experienced writing Arduino sketches, this will 
probably still be daunting to you, as the driver and sample 
code is:
• written using C/C++ conventions rather than the 

simpler Arduino language syntax.
•  Not written as a “class”, as are most Arduino libraries. 

Therefore it is more difficult for Arduino programmers, 
who are used to simply “including” a library and 
accessing the device via various class methods.

• written to work with either an Arduino board or a 
PC (outfitted with FTDI's VA800A-SPI MPSSE USB 
adapter, model, available from the FTDI online store 
REF. 3 )

While there wasn't a lot I could easily do about 1) and 2), 
what I decided was to do the following:
• Remove all of the conditional-compilation source code 

needed to operate the EVE display using an MPSSE-
equipped PC. This made the code easier to follow.

• Remove all of the complex routines that were contained 
in the FTDI sample program which, although they 
produced a fancy demo program, made it very hard for 
a beginner with basic requirements, to follow.

Basic EVE Initialization
The FT800 EVE chip is designed to work with TFT panels 
with pixel counts up to 512 vertically by 512 horizontally. 
The actual pixel count of the display must be specified as 
part of the initialization routine, as well as a fair number 

of other timing parameters etc. We don't have to worry 
much about this, apart from examining the FTDI-supplied 
driver routines and  making sure that the settings match 
our display. Both the FTDI VM800B and Mikroelektronika 
ConnectEVE display modules that I have on hand were 
WQVGA (Wide 1/4 VGA resolution). The resolution of 
these modules is 480H X 272V. The FTDI SampleApp1.0 
program that is described in AN246 includes the proper 
definitions for this display, starting at line 14 of the 
“sampleApp.cpp” file. In my program, the same definitions 
are found at line 17 of the “FT800_Basic_Setup” file.

I could not find the pixel resolution of either the 3.5” 
or 5” VM800 modules on FTDI's website. However, if 
you wanted to use the EVE controller with a QVGA TFT 
module, the correct display definitions for it, as well as the 
WQVGA  resolutions, can be found in FTDI application 
note AN_240 on page 16.

To start up the EVE controller chip, you must first drive the  
*PD pin low for 20 ms and then wait 20 ms after this line is 
returned high again. After this, there is a prescribed series 
of commands that must be issued to the EVE controller. 
You can see this command sequence in my program 
starting at line 180 (close to the start of the standard 
“setup” routine present in all Arduino sketches). I won't 
go into any detail here, except to say that the sequence is 
pretty well-explained in section 4.2.2 of Application note 
AN_240.

FTDI mentions the fact that the maximum SPI rate that 
the FT800 EVE will accept is less than/equal to 10 MHz 
during the early phases of the initialization. However, once 
the internal PLL is set to 48 MHz, you can increase the 
SPI rate of your MCU up to 30 MHz. This is not really a 
concern with Mega328 Arduino boards, as the maximum 
SPI rate that they can achieve is SysCLK/2 or 8 MHz. 
However, if you are using the resistive level-shifter circuitry 
shown in Figure 1 of Part 1, you should limit the SPI rate to 
SysCLK/4, because this form of level shifter degrades the 
SPI signals somewhat, and an 8 MHz SPI rate is too high to 
work properly, in my experience. The M328's SPI rate is set 

is
0

m
d.
d
d

d,
h

3
es

h
of
e
D

s 
0 

m
.

d 
d 
,

h

3
s

h 
f 
l 

D Photo 2



6     SVET ELEKTRONIKE www.svet-el.si/englishwww.svet-el.si/english

PROGRAMMING

in file “FT_GPU_Hal.cpp” at line 17 of my program (line 42 
of FTDI's sampleApp1  program), program 1.

You may wonder what  “Hal”  means as part of some of 
the FTDI-supplied driver files. Hal is an abbreviation for 
Hardware Abstraction Layer. What this means is that FTDI 
has broken up its EVE driver structure into two layers. There 
is an upper,  generic layer of the driver that implements 
all of the necessary commands needed to use the EVE 
controller. As well, there is the Hardware Abstraction 
Layer, which translates these generic operations into the  
MCU code that is needed to access the physical registers 
and I/O ports for the chosen target device. It is in this layer 
that you would find both the code needed for the Arduino 
Mega328P MCU, as well as the routines needed if you 
instead wanted to communicate with EVE via an MPSSE-
equipped PC (as mentioned earlier). It is in these files that I 
went to the trouble of removing all of the MPSSE-equipped 
PC driver code, to make the program easier to follow for 
the majority of readers that would not be using this option.

After the above initialization routines have been performed, 
the EVE controller is ready to accept the user's specific 
commands.

Doing Something Useful
Now let's take a look at what we have to do in order to 
display a useful Graphical User Interface, or GUI. To begin 
with, I have to say that the EVE controller is a very complex 
device, with a very involved set of instructions and many 
registers. FTDI has supplied more than 300 pages of 
technical literature in the form of a Programmer's Guide, 
FT800 EVE data  sheet and numerous applications notes 
(with AN_240 and AN246  containing the most useful 
information for newcomers).

That being said, a newbie who just wants to program the 
EVE to provide a display with some touch-sensitive buttons 
and controls, some simple readouts like gauges,dials, clock 
displays etc., and simple text (in many font sizes), doesn't 
need to fully understand all that is going on “underneath 
the hood” of the EVE chip. As long as you have a general 
idea of how the EVE chip works, as well as some sample 

code to “tweak” to your own requirements, you should 
manage OK.

The basic concepts that you need to understand are as 
follows. The video display section of the EVE controller 
consists of two discrete graphics “engines” that work 
independently. These are the main graphics engine and the 
graphics coprocessor. The main graphics engine performs 
basic graphics operations such as drawing points,lines, 
rectangles, bitmaps  and what FTDI call Edge Strips.

The graphics co-processor engine performs many higher-
level functions such as drawing text, buttons, gauges, rows 
of keys, bitmap images, progress and scroll bars, etc. In 
addition to generating these high-level “widgets”, this co-
processor also performs several very high-level functions 
such as:
• An FTDI banner screen with a moving logo (more useful 

to FTDI than you or I)
• A complete touch-screen calibration routine, which 

prompts the user to touch 3 different circles that 
are displayed consecutively on the screen, and then 
performs all of the calculations necessary to calibrate 
the resistive touch-screen to the EVE controller.

Any application that makes use of the touch-screen 
requires a calibration to be done, at least once when you 
first use the module. Having a built-in routine to handle 
this without any programming on your part, is a real 
advantage.

As I mentioned in Part 1, the EVE controller is unique in 
that it does not contain a video frame buffer- that is to 
say, a large SRAM array to hold all of the video pixel data. 
Instead it maintains a display list, in internal SRAM, of the 
attributes of all of the graphics elements that the user has 
asked to be displayed on the screen. So, to “paint” a screen 
with the required text, lines, and widgets,  the programmer 
fills up this display list with the necessary commands 
needed to generate all of the necessary graphics elements.

Actually it is a bit more complicated than this because 
both the graphics engine and the co-processor engine each 
have their own display list. So, you would fill the graphics 
display list with the low-level graphics elements- basically 
lines, circles and edge strips. The higher-level “widgets”, 
as well as the “FTDI logo” and “calibrate” functions are 
loaded into the co-processor's display list.

Although the EVE controller actually maintains the two 
discrete display lists  mentioned in the last paragraph, there 
is a nice feature which I haven't yet mentioned. It turns out 
that the co-processor engine is able to process the lower-
level graphics commands as well as its own higher-level 
commands (such as widgets). So, this means that if your 
graphics demands are not too high, you can ignore the 
graphics engine display list, and just load both your high 
and low-level commands into the co-processor's display list 
(ignoring the other list). This “shortcut” is used in FTDI's 
example programs, and is the method that I use in my own 

co
m

T
fo
co
n
g
b
re

T
e
o
a
p

c
m

T
f
c
i
g
b
r

T
l
o
a
p



SVET ELEKTRONIKE     7    www.svet-el.si/englishwww.svet-el.si/english

PROGRAMMING

programs. Were you doing complex graphics, you might 
need to use both of the two engines simultaneously, and 
then you would have to fill both display lists as necessary.

What I haven't mentioned yet is that the EVE controller 
actually breaks these display lists into two sections. First 
you populate the display list with the commands to clear the 
screen and generate all of the necessary graphics elements 
needed for the current screen.Then you perform what is 
called a “swap”: this allows the appropriate graphics 
engine to start rendering those graphics elements onto 
the display screen. At the same time, it points to a second 
area of RAM which acts as the storage space for a “new” 
display list. You are then free to fill up this “new” display 
list with graphics commands- without those commands 
actually interfering with whatever is currently being sent to 
the TFT display. The effect of this is that you get virtually 
instantaneous screen updates, regardless of the complexity 
of the graphics that you want rendered.

Another way of looking at this process is as follows. Once 
your host MCU has filled up a display list, and performed 
the “Swap” command, the SPI data transfer will stop, and 
your host MCU can proceed to do any other non-video 
related tasks required- until such time as you wish to either:
• Change something on the display.
• Check to see if the user has touched the screen.
• Access the Audio engine present on the EVE controller.

I have over-simplified this process somewhat. In the case of 
the graphics engine display list, all commands are 32-bits 
long (4 bytes). So, it is relatively easy to sequentially fill up 
this list, checking to make sure that you haven't reached 
the maximum size of the list. The graphics display buffer 
size is 8K bytes so it can handle 2048 4-byte commands. 
I personally use the graphics co-processor to render all of 
the graphics elements that I use, so I don't actually use 
the 8K display buffer assigned to the graphics engine. 
Therefore, I am not sure if you can only use half of this 8K 
bytes of RAM for the list you are populating (with the other 
half used for the “swap” function).

In the case of the co-processor, the handling of the display 
list is somewhat different. This list is implemented as a 
4K byte ring buffer. So, you start at address 0 and start 
filling the buffer up with co-processor commands (using 
the write pointer). There is also a read pointer for this ring 
buffer. While you are filling up the ring buffer, the graphics 
co-processor is concurrently reading from the buffer (using 
the read pointer) and is processing those commands. 
When the co-processor “sees” the CMD_SWAP message, it 
will transfer the graphics elements which it has processed 
to the actual display screen. The co-processor is fast, 
but it does take a finite amount of time to process each 
command that it receives. Therefore, as you are writing 
the co-processor commands to the ring buffer, you have 
to check to see whether the co-processor has gotten so 

Program 1

SPI.setClockDivider(SPI_CLOCK_DIV4); // SPI rate =4 MHZ for 16 MHz clock

or

SPI.setClockDivider(SPI_CLOCK_DIV2); // SPI rate = 8 Mhz for 16 Mhz clock
____________________________________
Program 2

Ft_App_WrCoCmd_Buffer(phost,CLEAR_COLOR_RGB(219,180,150));
____________________________________
Program 3

Ft_App_WrCoCmd_Buffer(phost,COLOR_RGB(255,255,255));
____________________________________
Program 4

PROGMEM char *info[] = { "Basic Screen setup","Brian Millier"};
____________________________________
Program 5

Ft_Gpu_CoCmd_Button(phost,20,100, 120,70,24,0,"Calibrate");   
____________________________________
Program 6

     Ft_App_WrCoCmd_Buffer(phost,DISPLAY());
    Ft_Gpu_CoCmd_Swap(phost);
    Ft_Gpu_Hal_WaitCmdfifo_empty(phost);

____________________________________



8     SVET ELEKTRONIKE www.svet-el.si/englishwww.svet-el.si/english

PROGRAMMING

far behind that you are “catching up with it from  behind” 
in the ring buffer. This check is performed automatically 
by routines in the FTDI-supplied driver code, and I have 
not had to worry about it in my programs, as my graphics 
demands were not too high.

Actual Code
Let's look at a snippet of actual code found in my FT800_
Basic_Setup demo program.

 What you see in Listing 1 is the code needed to compose 
the splash screen described earlier. This routine follows the 
generic set-up code needed to initialize an FT800 controller 
for any operation (as discussed earlier). In my program, 
this code is contained in the StartupScreen function. Note 
that since long lines that had to be split here, I have the 
2nd part of the split line indented to make this splitting 
more obvious to the reader.

The first thing to notice, a few lines into the listing, is that 
I mention having removed the standard FTDI touchscreen 
Calibration function. All FTDI-supplied example programs 
contain this routine early  in their programs, forcing you 
to do a calibration every time you run the program. This 
gets pretty boring when you are developing code, as you 
are repeating it every time you restart your program. After I  
tired of doing this, I decided to implement a work-around. I 
found out where these calibration values were being stored 
within FT800 registers. I then used the M328's serial port 
and the “C” Serial.println routine to send them out to a PC 
terminal program, where I wrote them down. Next I wrote 
a routine (storeTouchscreenCals) that took these values 
(expressed as constants) and sent them to the proper 
FT800 registers. The end effect is that I have a calibrated 
touchscreen without running a calibration routine at each 
M328 startup.

QUIZ
Using the FT800 Programmer's Guide, find out what 
FT800 registers are used to store these calibration 
constants (hint: there are 6 of them). Compose a routine 
that restores these 6 values, as constants, to the proper 
FT800 registers.)

Next month in Part 3, I will give you the answer to this 
quiz,

After my calibration-store routine, the next  FT800 
command found in this function is:

Ft_Gpu_CoCmd_Dlstart(phost);

This is a function telling the co-processor that we want to 
start a new display list. Like all of the FT800 functions, this 
command passes “phost” as a parameter. Don't worry 
about the meaning of this- as far as I know it is a “handle” 
that is defined elsewhere in the driver routines, but it does 
need to be specified (excuse my vagueness: I am not an 
expert C/C++ programmer!)

While it would be nice (i.e. consistent) if all FT800 co-
processor commands were structured as above, but they 
are not. The other common method of sending commands 
to the co-processor is demonstrated in the 2nd command, 
program 2.
 
Here we are writing to the co-processor command Ring 
buffer, the command CLEAR_COLOR_RGB(219,180,150). 
If you refer to the FT800 Programmer's Guide, you will 
find this command on page 112. Right away you will notice 
that this is NOT a co-processor command, but rather a 
graphics engine command. This demonstrates the feature 
that I mentioned earlier, where both graphics engine and 
co-processor engine commands can be inter-mingled, and 
sent to the co-processor display list.

This command specifies what RGB color is used for the 
background: i.e. when the screen is cleared. (the RGB 
values 219,180,150 produce a light pink/tan color).

       Ft_App_WrCoCmd_Buffer(phost,CLEAR(1,1,1));

If you refer to the FT800 Programmer's Guide, you will 
find this command on page 109. When I first read over 
the Programmer's Guide, it seemed to me that, in order 
to perform this CLEAR function, that you were actually 
sending the FT800 the ASCII string “CLEAR 1,1,1)”. It even 
looks this way in the program code itself. However this is 
not the case!

All graphics engine commands are 4-byte numbers. For 
this command, which can clear any/all of the  color, stencil 
and tag buffers, the values of the parameters (the 1,1,1) 
are encoded into various bits of this 4-byte value. This is 
all looked after by routines in the driver library, as well as 
a huge list of #define statements (in file FT_GPU.h) which 
translate these “user-friendly” command names into 4-byte 
values, for use by the FT800. I'll go into the use of some of 
the color and tag buffers later on, but for now, all we need 
to know is that we should clear all three of them, program 
3, sets the foreground or drawing color to 255 for each of 
the red,green and blue phosphors (i.e. White).

Following this command is a long (2 line) command used 
to put some text on the screen. It is a somewhat complex 
statement, but centers the text horizontally, using font 
#30 (medium size). While it is possible to specify the 
text  literally as an ASCII string  like “sample text”, FTDI 
generally uses another method:

(char*)pgm_read_word(&info[0])
   
with the corresponding line which defines the string(s), 
program 4.

For either method of defining the string constant, this 
string constant is stored in program memory (FLASH). 
However, using the second method (shown above), when 
it's time to actually send the string to the FT800, the whole 
string is not copied into M328 SRAM and then transferred 



SVET ELEKTRONIKE     9    www.svet-el.si/englishwww.svet-el.si/english

PROGRAMMING

to the FT800. Instead, on a character by character basis, it 
is copied from FLASH to SRAM and then on to the FT800.
Using this method, you save the amount of SRAM needed 
to hold the whole string, and this saving is repeated for 
every string constant that you need to display. Since 
the M328 SRAM is only 2K bytes, these savings can be 
important!

The next section of the code places the 2 button widgets 
on the screen. First, you issue   a command  COLOR_
RGB(255,255,255) to make the foreground (drawing) 
color WHITE.The color of the text within the button is 
what is being defined here.

In the case of the button widgets, you can change the 
default color (BLUE) of the button itself using the FG_
COLOR command, but I did not do this here.

Before you actually send the command to place the button 
widget on the screen, you want to define this button 
with a TAG. What is a TAG?. It is a byte (or character) 
that you associate with the area on the screen taken up 
by whatever graphics items you place on the screen after 
this TAG command and before the next TAG command. 
Then, whenever you touch the screen in this defined area, 
the touchscreen “engine” will report this TAG byte in the 
FT800 register “REG_TOUCH_TAG”. So, here you can see 
that the first button that I place will be tagged “C”, which 
is a convenient abbreviation for the “Calibrate” function 
of the button. Note that you can use any byte value (or 
ASCII character value) for the TAG- apart from zero. Zero 
is the value that is stored in the  “REG_TOUCH_TAG” 
resister when the touchscreen is NOT being touched. With 
this taken care of, you actually place the button using the 
following  line, program 5.

See the programmer's Guide page 161 for the explanation 
of the 7 parameters passed to this routine. Note that in 
the case of button widgets, you are not passing “Cmd_
Button” to the co-processor display list using the “Ft_App_
WrCoCmd_Buffer”   function, but are instead invoking 
the dedicated  “Ft_Gpu_CoCmd_Button” function  to 
accomplish this. In general, the graphic engine commands 
are sent using the  “Ft_App_WrCoCmd_Buffer”    function, 
whereas the graphics co-processor commands each have 
their own dedicated function call. If you want to use any 
of the co-processor commands listed in that section of the 
Programmer's Guide, please take a look in the file “FT_
CoPro_Cmds.h” to see the exact function call definition 
used in the driver software. You also have to remain aware 
of the fact that all C/C++ variables, function names etc. 
are case-sensitive.

Aside from putting up another button on the screen, we are 
finished composing our start-up screen. All that remains is 
to execute the following few statements, program 6.

These lines tell the FT800 to display the preceding graphics 
elements, The   “Ft_Gpu_CoCmd_Swap” command tells 
the FT800 to swap the contents of this display list into 

another buffer which the co-processor uses to do the 
actual screen update, thereby freeing the 4K Ring buffer 
up for filling with the next display list. Since this takes a bit 
of time, the “Ft_Gpu_Hal_WaitCmdfifo_empty” function 
is called to wait until this transfer has finished.

At this point, we have an EVE display looking like Photo 
3. The “textured” appearance of the screen background is 
an “artifact”: likely the fault of my camera (or my photo 
technique) and does not show up on the actual screen.

All that remains is to handle the touchscreen itself. The last 
11 lines of Listing 1 consist of a simple DO-WHILE loop 
where we call the Read_keys function, which returns the 
value stored in  “REG_TOUCH_TAG” register. As long as 
the screen is not being touched, this function returns a zero, 
otherwise it returns the TAG byte that you have associated 
with the object on the screen that is being touched at the 
time. In this simple sample program, all I do is check for 
the character values for “C” or “O”, and print messages 
out  the serial port indicating which button was pressed.

Next month, in the third part of the series, we'll look at 
some routines that we can use to provide things such as:
• a numeric keyboard that can be used to allow the user 

to enter numeric data into your program.
• A routine that allows you to plot X-Y data to a graph.
• A Bar display which can be used to indicate battery 

voltage, and which changes bar color from green to 
yellow to red as the battery voltage decreases.

• A simple function to provide some audible feedback to 
the user, via the FT800's Audio engine.

I hope that you have been enjoying the FT800 EVE series 
so far, and hope to see you back again next month for the 
next part of the series.
 

References
• REF.1   FTDI AN_246 Application note:

◊ http://www.ftdichip.com/Support/Documents/
AppNotes/AN_246%20VM800CB_SampleApp_
Arduino_Introduction.pdf

• REF. 2 FTDI Sample Application  for the Arduino.
◊ h t t p : / / w w w . f t d i c h i p . c o m / S u p p o r t /

SoftwareExamples/EVE/FT800_SampleApp_1.0.zip
• REF 3 FTDI MPSSE module available at their online 

store.
◊ http://apple.clickandbuild.com/cnb/shop/ftdich

ip?productID=418&op=catalogue-product_info-
null&prodCategoryID=199

www.svet-el.si/englishwww.svet-el.si/english


