
We at Svet elektronike are proud on
what we do since 1994!

Slovenian website

www.svet.el.si

English website

www.svet-el.si/english

Brian's corner

The FTDI EVE
graphics controller (1)

REVIJA ZA ELEKTRONIKO, AVTOMATIKO, RA UNALNIŠTVO IN TELEKOMUNIKACIJE

1stran cenik.ai 1 3.11.2015 14:15:18

Media KIT - Svet elektronike magazine

ENGLISH

 www.svet-el.si/download/Media KIT_UK SE.pdf

REVIJA ZA AVTOMATIZACIJO, ROBOTIKO, STROJNIŠTVO IN INFORMATIKO

1stran cenik.ai 2 3.11.2015 14:13:50

Presentation of Svet mehatronike magazinePresentation of Svet mehatronike magazine

ENGLISH

 www.svet-el.si/download/ Media KIT_UK SM.pdf

MAGAZINE FOR AUTOMATION, ROBOTICS, MECHANICS & IT

Brian's corner

www.svet-el.si/english

Article on the web site

Download programs
and
Download PDF of the article

AX elektronika d.o.o.AX elektronika d.o.o.
Špruha 33Špruha 33

SI-1236 TrzinSI-1236 Trzin
Slovenia / EuropeSlovenia / Europe

00386 1 549 14 0000386 1 549 14 00
www.svet-el.siwww.svet-el.si
stik@svet-el.sistik@svet-el.si

SVET ELEKTRONIKE 3 www.svet-el.si/englishwww.svet-el.si/english

PROGRAMMING

Sophisticated graphics using only a
modest 8-bit MCU
In late 2013, FTDI (the company that makes the USB-serial
interface chips we all use) started advertising their new EVE
display controller chips. Soon afterward, Mikroelektronika
started selling 4.3” TFT display boards based upon this
new controller. I got quite intrigued at this point, and
started to look into the EVE controllers more closely.

Basically, the EVE controller chip is a very intelligent TFT
display controller which can handle TFT panels up to 512
x 512 pixels, in up to 18-bit colour depth, or resolution.
They will interface to any MCU with an SPI port, which
covers most all MCUs apart from a few low pin-count
ones. The EVE SPI interface is high speed (up to 30 Mb/s).
This, coupled with the fact that the EVE controller is an
intelligent one, executing high-level graphics commands,
means that you can achieve very impressive graphics
displays, even if you are hosting it on a modest 8-bit MCU,
as FTDI's advertisements claim. In my personal experience,
it is possible to implement a very nice GUI using the EVE
controller driven with the Atmel AVR Atmega328 (as found
on the Arduino Uno board ,for example.)

The EVE controller provides a comprehensive variety of
low-level graphics commands such as those needed to
clear all/part of the screen, draw lines, rectangles, circles
and other basic block figures. In addition, it also contains
a co-processor engine, which adds a whole series of widgets
such as buttons, sliders, rotary controls, clocks, switches,
progress bars, etc. These are generated quite easily by
sending out the proper widget command, along with the
parameters needed to customize it to your needs: i.e. size,
orientation, full scale value, etc.

The EVE controller also handles the resistive touch-screen
functionality. In addition to the normal touch screen
routines, where the controller returns the X-Y value of the
spot being pressed, the widgets mentioned earlier can be
“tagged” with an ID number, and when the user touches
those widgets, this distinctive “tag” ID is returned to your
program. This makes a touch-enabled GUI quite easy to
implement, even when using only a modest 8-bit MCU.

Finally, the EVE controller provides an audio output. I'll
discuss this further, but at this point, let's just say that the
EVE can “play” sound files of various compressed formats.
Also, it implements a sound synthesizer function, which
allows it to play musical notes,melodies, or provide sound
effects.

Now that you have a basic idea of what EVE will do, let's
step back a bit, and take a comparative look at the various
other methods that are available to provide a colour TFT
touch-screen capability to your MCU project. In an article
back in SE issue #xxx, I outlined two basic approaches to
adding a TFT display to your project. The first one involves
the use of a “dumb” TFT display which employs an 8-bit
(or 16-bit) parallel interface to your MCU of choice. These

Figure 1: If you are using the Mikroelektronika Connect EVE module
(3.3V Logic and power supply) with a 5V MCU, you can match signal
levels using this resistive voltage divider.

The FTDI EVE graphics controller (1)
Most electronics enthusiasts strive to make their projects as user-friendly and commercial in appearance as
possible. I'm no exception, and lately I have been trying to use TFT colour displays with touch-screen capability
whenever practical. Although they are still somewhat expensive, you should also consider the savings that you
can obtain by eliminating many of the switches, potentiometers, etc. that the touch-screen can replace.

al
E
a
is
d

T
2

n.
h

nt
).
n
s,
cs
U,
e,
E
d

Figure 1: If you are using the Mikroelektronika Connect EVE module

l
E
a
s
d

T
2
.

h
t
.

n
,
s
,
,

E
d

Fi 1 If i h Mik l k ik C EVE d l

F
d
E
A
a
ef

N
st
o
to
b
a
th
(o

F
d
E
A
a
e

N
s
o
t
b
a
t
(

4 SVET ELEKTRONIKE www.svet-el.si/englishwww.svet-el.si/english

PROGRAMMING

displays are very inexpensive on eBay (10-20 EUR) but they
do have some disadvantages:
• They require up to 26 digital I/O lines on your MCU,

forcing you to use a higher pin-count MCU than you
might otherwise employ. All TFT displays operate on
3.3V, so all of these I/O lines
must be at 3.3V levels.

• You must find the proper
driver firmware for your
chosen MCU, and this driver
often uses up a lot of Flash
memory space that you could
otherwise use for your own
program. You should also
be aware that while these
displays come in a limited
number of physical sizes,
there are many different
LCD driver chips used on the
different panels, which makes
finding the proper driver
somewhat more difficult.

 I should mention that some of
these “dumb” TFT displays are
now being designed with direct
Arduino compatibility. That is,

they are mounted on a PCB which will plug directly into
an Arduino Mega 2560 (or they include a “transition” PCB
that goes between the TFT display itself and the Arduino
Mega 2560). The Mega2560 MCU has plenty of I/O
capacity, which addresses concern #1 above, and some of
these display modules come with Arduino drivers, covering
concern #2. Such Arduino-targeted boards contain level-
shifting chips to handle the 5V levels present on the
Arduino Mega 2560.

I tried one of these “dumb” TFT display/Arduino
combinations, and while it may not be typical, I found that
while the display module that I received worked, it was
so dim that it was unusable. I suspect that these Chinese
vendors are selling “seconds”: TFT displays that don't pass
the normal QC standards of the TFT panel manufacturer. I
have seen feedback from customers, on various web-sites,
regarding this shortcoming. You may want to think twice
about going this route.

The second approach involves a serially-interfaced
TFT display which contains its own intelligent display
controller MCU. Such displays contain a whole library of
high-level graphics routines and touch-screen handling,
all of which you can access by sending the appropriate
commands to the display, over a high-speed serial data
link. Such commands are pretty compact in relation to the
complexity of the graphics objects that they generate, so a
standard serial data link, at a high baud rate (i.e. 115,200)
is adequate to produce quite useable graphics display.
I've had excellent results on several projects using the
μLCD series of displays from 4D Systems in Australia. They
come in many sizes from small mobile-phone sizes up to
large 4.3” displays. The SE article that I referred to earlier,
covered these displays in detail, as well as including lots of
hints and examples of Bascom/AVR code to use with them.
I recently finished a personal project using 4D Systems
4.3” μLCD display: an IR remote control which controlled

Table 1: Comparison of unique features amongst three currently-available 4.3” EVE-based display
modules. All modules feature a QVGA resolution of 480 X 272 pixels, and 16-bit colour depth.

Photo 1: This is a touch-screen multi-function IR remote control I built a
while back, using 4D Systems uLCD-43PT intelligent TFT touchscreen
module. I am now designing a similar device using the much less
expensive EVE display modules.

th
a
th
M
ca
th
co
sh
A

co
w
so
ve
th
h
re
a

T
T
co
h
a
co
i
co

t
a
t
M
c
t
c
s
A

I
c
w
s
v
t
h
r
a

T
T
c
h
a
c
l
c

Feature FTDI
VM800B

Mikroelektronika
Connect-EVE

4D Systems
4DLCD-FT843

Power supply 3.3V or 5V 3.3V 3.3V

Logic levels

3.3V or 5V 3.3V (not 5V Tolerant) 3.3V (not 5V tolerant)

Ease of Panel
mount

Easy
(bezel included)

Mounting holes but
no bezel

Difficult without Bezel and
Breakout board kit
(available separately)

Interface
connector

10 pin 0.1”
header

10 pin 0.1” header &
2X5 0.1” header

10 pin 0.5mm FPC
flex. ribbon

Audio
capability

Amplifier &
speaker

Audio output pin Audio output pin

Price 64 EUR 50 EUR 43 EUR (includes Bezel
and breakout board)

SVET ELEKTRONIKE 5 www.svet-el.si/englishwww.svet-el.si/english

PROGRAMMING

my flat-screen TV and the three peripheral units associated
with it. In place of the myriad of small buttons present on
four separate remote controls, this unit features a clear,
easy to use graphics display containing only the commonly-
used buttons on each of the individual IR remotes. The
user can quickly switch amongst the four “screens” (one
per remote unit) using a small push-button. An added
advantage to this approach is that this unit is easy to see
in the dark, which is not true of a standard commercial IR
remote. Photo 1 shows one of the two such units that I
built recently.

Photo 1. This is a touch-screen multi-function IR remote
control I built a while back, using 4D Systems uLCD-43PT
intelligent TFT touchscreen module. I am now designing
a similar device using the much less expensive EVE display
modules.

 4D System's new “Workshop” IDE program contains a
very high-level method of designing the various graphics
screens needed for such a project. If you are familiar with
Visual Basic, you would find 4D Systems “Workshop” IDE
very easy to use in designing a nice GUI for your application.
The disadvantage of the 4D Systems μLCD display is
that they are relatively expensive. The 4.3” model, with a
resistive touch-screen, cost about 100 EUR, when I bought
them last year. They also need a μSD card to be inserted
into an on-board socket- to hold the files containing the
graphics images for the various “widgets” that are a part
of the user's GUI design. This adds about another 5 EUR
to the price of the display.

Photo 2. This is the control
PCB side of the Connect-
EVE 4.3" display module.
Note that it contains both
a 10 pin interface and a 2X5
header, with all necessary
signals available on both.
The "150 MA OP" label
is one that I added to
remind me that the module
draws 150 milliamp when

operating, which is important since I am using it in battery-
powered projects .

I happened to have 2 extra 4.3” μLCD displays left over
after finishing a commercial project I designed/built
recently, so it cost me basically nothing to use my “spares”
for the IR remote controller project. But, since I felt that
the average user would not likely be interested in such an
expensive IR remote, I decided against writing an article
about this project, at least in its present form (but I am
working on an EVE version/article).

So, with this quick comparison of the various TFT display
options out of the way, let's look in more detail at the
EVE controller and the display panels that are currently
available.

Whats' So Great About EVE?
Since I am a fan of the 4D Systems intelligent μLCD
modules, you might wonder how I became interested in
the EVE display controller chips. Well, to start with, there
was the issue of price. Right from the start, it was clear that
EVE-based TFT display modules were going to be a lot less
expensive than the 4D systems μLCD display modules. For
example, the 4.3” size (which I find ideal for many of my
projects) was available in Mikroelektronika's Connect-EVE
module, costing about 50 EUR. This is about ½ the cost of
a comparable 4D Systems μLCD module.

Another consideration concerned the interface method.
While I generally like using the serial port method used
by μLCD modules, there can be some disadvantages to
it. For any graphics applications requiring fast motion, or
complex graphics operations, the speed of the serial port
can be a limiting factor. Also, many AVR MCUs contain
only a single serial port, so a problem exists if you have an
additional peripheral device that also needs a serial port.
Indeed, if your project needs a USB port capability, you
will often use an FTDI USB-serial interface chip for this
purpose, so two serial ports would be needed if you also
use a μLCD display.

The EVE graphics controller chip instead uses an SPI
interface, along with a couple of other control lines (*PD
and interrupt). An SPI port is much faster than a serial port.
In the case of the EVE chip, it is capable of running at up to
30 Mb/s. You won't be able to achieve this high a rate with
common AVR chips, as their highest SPI rate is SYSCLK/2

(8 Mb/s when using the 16
MHz crystal common on
Arduino boards). Still, this
is 69 times faster than the
115,200 baud rate that you
could use between an AVR
MCU and a μLCD display.

The other advantage to the
SPI protocol is that you can
have many different devices

o
p

a
re
fo
th
ex
a
w

S
o
E
av

o
p

I
a
r
f
t
e
a
w

S
o
E
a

o
t-
e.
h

X5
ry
h.
e
o
le
n

common AVR chips, as their hig
(8
M
A
s
1
co
M

T
S
h

l
-
.

h
5
y
.
l

o
e
n

p
(
M
A
i
1
c
M

T
S
h

6 SVET ELEKTRONIKE www.svet-el.si/englishwww.svet-el.si/english

PROGRAMMING

sharing a single SPI port, so long as they all don't need
to communicate simultaneously. So, even with a modest
Atmega328 MCU, you can drive an EVE display along with
several other SPI peripherals, as well as any other peripheral
that needs a serial port.

A second advantage to the EVE display controller chip,
is that it uses an advanced method of generating all
of the “Widgets” or graphics objects which you might
need. These are all generated and stored within the EVE
controller chip itself. In contrast, the μLCD displays form
their widgets using bit-map images, which must be stored
in the μSD card mounted on the μLCD board. This μSD
card also holds any other images that you need to display,
as well as any sound files. While the cost of a μSD card is
low, it's important to note that one must download these
bitmap files to the μSD card using the PC computer that
is running the 4D Systems “workshop” IDE program. This
usually requires the use of a USB card-reader module on
most PCs (apart from laptops). To put this in another way:
All of the code needed to generate a GUI on an EVE display
is contained in the firmware you write for your chosen
MCU, which can be easily distributed.

The μLCD displays will require that you write firmware
for your MCU, which you can easily distribute, but you
(or the end-user) must also have access to the 4D Systems
“Workshop” IDE (which runs only on a PC) to generate the
necessary GUI bitmaps. These must then be downloaded
to a μSD card, which is then inserted into the μLCD
display's on-board card socket.

As you can see, the EVE method is more straight-forward,
particularly if others need to duplicate your project.

As I mentioned earlier, both EVE-based and μLCD modules
handle all interaction with the touch screen using internal,
high-level routines. That is to say, your program is relieved
of the task of constantly scanning the resistive touch screen

display for presses, and then doing a lot of calculations
with X,Y co-ordinates, to determine which of the buttons,
widgets, etc. was actually touched. (or adjusted). On
both of these display, your program merely polls the
display controller periodically, and it returns a code
which identifies which widget on the screen was touched.
This is really nice!

The last major feature of both of these display modules
involves sound generation capabilities. The μLCD
display's sound capability involves playing various types
of compressed sound files, at a fairly low bit-rate and
resolution. This file(s) must be downloaded to a μSD
card, which is then mounted into the display's on-board
socket. When I used μLCD displays for my most recent

project, this was the only way to generate sound. In other
words, if you needed something as simple as a “beep” or
a click to indicate a screen touch, you had to download a
compressed audio file to the μSD card. I think they should
have allowed for a simple routine which generates a square-
wave tone, the frequency and duration of which you could
pass to the display as command parameters. Something
along the lines of Bascom/AVR's SOUND statement would
have been fine. The larger μLCD displays contain an audio
amplifier and a very small, 12 mm speaker.

In the case of the EVE display controller, the sound
functions are somewhat more versatile. It can play sound
files in various formats (8-bit PCM, μLAW, 4-bit ADPCM)
like the μLCD displays. However it also contains the
equivalent of a MIDI synthesizer (something like the one I
described in my SE article #xxx) which can either play simple
musical melodies, or be used to provide simple beeps and
clicks as needed for user interaction with the GUI. Playing
a note consists of just a few short commands specifying
the MIDI instrument, musical note and note duration. The
Mikroelektronika Connect-EVE modules that I am using
have an audio output pin, but no amplifier or speaker on-
board. I haven't needed or tried out the sound capability
of the EVE controller yet.

 What's your preference: 5V or 3.3V
Displays?
If you are using an AVR MCU, you are probably running
it at a Vcc 5 volts. You get full speed operation that way,
and many of the common peripheral IC devices operate
on 5V. The most commonly-used Arduino boards also
operate on 5V, although this is gradually changing with
the advent of the Due, as well as numerous “clones” from
other manufacturers that operate on either 3.3V, or both
3.3V and 5V.

Regardless of what TFT display module you choose, they
all operate internally at 3.3V. However, the power supply
voltage that you must provide to the module will vary
from one manufacturer to the next. Also the necessary
logic levels that are required will also vary. It's critical to
note that supplying a module that requires a 3.3V power

Photo 2: This is the control PCB side of the Connect-EVE 4.3" display
module. Note that it contains both a 10 pin interface and a 2X5 header,
with all necessary signals available on both. The "150 MA OP" label
is one that I added to remind me that the module draws 150 milliamp
when operating, which is important since I am using it in battery-
powered projects .

d
w
w
b
d
w
T

T
n
d
o
re
ca

d
w
w
b
d
w
T

T
i
d
o
r
c

SVET ELEKTRONIKE 7 www.svet-el.si/englishwww.svet-el.si/english

PROGRAMMING

source with 5V will likely destroy it, as will the application
of 5V logic level signals to a module that calls for 3.3V
(maximum) logic levels.

Table 1 shows some important features of the three 4.3”
EVE-based display modules that were available when I
wrote this article. Here you can see that only FTDI's own
modules are capable of operating with either a 3.3 or 5
volt power supply. Related to this, you can see that they
are also the only modules that will interface to either 3.3
or 5V logic-level signals. If you are using an MCU running
on 5V, like an Arduino Uno for example, its probably best
to choose the FTDI module rather than worrying about
adding your own level-shifting circuitry. Incidentally, FTDI
also sell similar EVE modules that contain a smaller board
(for the EVE) that connects up to the TFT display with a flex
cable. These models don't come with a mounting bezel for
the display however, so you might find them harder to use.

I started working with EVE-based displays after purchasing
a few Mikroelektronika Connect-EVE modules, which
I chose because they were the first EVE display modules
available. These displays operate on 3.3V only, and the first
few projects that I had in mind for them called for a 5V AVR
MCU, both for speed considerations, and because most of
the other peripheral devices needed were 5V devices.

Although I powered the EVE display itself with a separate
3.3V regulated supply, I also found that the required logic-
level conversion was easily accomplished using only a simple
resistive divider network (1K and 470 ohm resistors) on
the MCU's MOSI,SCK and -PD output pins. The Connect-
EVE's 3.3V logic-level MISO output signal was sufficient to
drive the ATMega328's MISO pin directly.

The Connect-EVE's -INT pin would also have interfaced to
the ATMega328 directly, but I did not need that pin for my
design. That being said, I should add that I was using an
SPI clock rate of only 4 MHz, due to limitations of some of
the other SPI devices used in the project. But I am doubtful
that the EVE display module would operate at much higher
SPI rates (it's rated up to 30 Mb/s maximum), using this
simple resistive level-shifting method. (shown in Figure 1).

Figure 1. If you are using the Mikroelektronika Connect EVE
module (3.3V Logic and power supply) with a 5V MCU, you
can match signal levels using this resistive voltage divider.

I didn't make use of the audio capabilities of the EVE
controller, but it should be noted that the FTDI VM800B
modules contain both an amplifier/filter and a small
speaker, which the other two modules do not.

When studying such exciting new TFT display modules, it
is quite easy to overlook the matter of mounting it in a
cabinet or on a panel. Like most readers, I am an electronics
enthusiast without access to customized plastic enclosures
with all the cut-outs and mounting tabs/brackets already
present . Unlike most readers, I do have a home-built
CNC milling machine available, so I can easily cut out

rectangular holes in aluminum or plastic enclosures. So,
personally, it was fairly easy to mount the Mikroelektronika
Connect-EVE modules by merely cutting the proper-sized
rectangular hole in an aluminum enclosure, and fastening
it in place using 4 spacers and screws/nuts. If you don't
have an easy way of cutting out a “clean” rectangular hole,
the FTDI VM800B modules may be your best choice, as they
come with a bezel which can hide any rough edges of the
hole that you cut out. Alternately, if you like the low price
of 4D System's 4DLCD-FT843 module, you can order the
optional Bezel/Breakout board kit (which I included in the
price shown in Table 1). This kit takes care of any mounting
complications, as well as providing a small breakout PCB
which mates up with the 10-way 0.5mm FPC ribbon cable,
and provides a 0.1” header connection. I should add that
using the Mikroelektronika Connect-EVE modules has the
advantage that it takes up a bit less space on your front
panel than using either of the other two models with their
respective bezels.

EVE's Basic Architecture
Before discussing the graphics features of the EVE controller,
I want to mention a couple of basic architectural details in
which EVE differs from most other graphics controllers.
Generally, graphics display controllers contain a fairly large
RAM memory device, which is used to store whatever image
is being displayed at the time. For the 4.3” TFT displays that
we're talking about, the pixel resolution is 480 x 272, and
the colour bit depth or resolution is 18-bits. This would
theoretically require a RAM chip capacity of

480 X 272 X 3 bytes/pixel or 391,680 bytes.

If you want to allow for smooth screen updates (like when
quick motion must be displayed). you generally have to
double the size of this RAM. This allows for two screen
buffers: one acting as the active display buffer, with the
other one being the one that the host MCU “fills up” with
the content of the next image “frame”. Then, you can just
swap the pointers to the buffers, to provide an instantly
updated screen, i.e. preventing the display of a screen
which visually “morphs” as its screen buffer is updated by
the host MCU. So, you can see that close to 800K bytes of
RAM is needed in this scenario.

n
V

”
I

n
5

ey
3
g
st
ut
DI
d

n
V

”
I

n
5
y
3
g
t
t
I

d

8 SVET ELEKTRONIKE www.svet-el.si/englishwww.svet-el.si/english

PROGRAMMING

The EVE controller doesn't work in this manner at all.
Instead, it keeps track of all of the visual items needed on
the active screen (lines, text, widgets, etc.) in a “display
list”. Then, custom-designed, high- speed logic examines
all of the aspects of the various objects in the display list,
and, on a line-by-line basis, determines what pixel data has
to be sent to the screen. So, while EVE still has to store
the display list in RAM, you don't need to design in a
RAM array that is capable of storing 2X a whole screen's
worth of information at a time. Like the traditional graphic
controller that contains double the amount of RAM needed
for a given size screen and swaps it between consecutive
frames, so too does the EVE controller maintain two
separate display object lists, which it swaps between, for
instant display updating.

While I don't pretend to understand the fine points of
EVE's design, it must be a lot more efficient for the EVE
controller to manipulate compact display lists than it is
to try and manipulate bits in a large display RAM array.
This would account for the fact that EVE-based displays
are much less expensive than competing modules using
conventional controller technology.

I should mention that if you are using an intelligent
display module such as the 4D Systems μLCD displays
or EVE, which of the above two methods is actually used
in your display module, is not overly important to you,
the programmer of the Host MCU. In either case you are
basically sending high-level graphics commands from the
host MCU to the display controller serially, and how the
display controller actually renders the video display, is
somewhat transparent to the host MCU programmer.

In my opinion, it's quite a bit easier for the MCU
programmer to learn the high-level graphics commands
needed to successfully use the 4D Systems μLCD displays,
than it is to use EVE-based modules. With only a few
simple commands (and parameters), you can clear the
screen and put up some text or a box very easily on a μLCD
display. There are a lot more commands and parameters
needed to use EVE-based display modules even for modest
applications. However, once you advance to more complex
GUI applications, I believe that the code complexity of
either of these display options are comparable.

I think it's fair to say that if the average MCU programmer
was not provided with a comprehensive EVE graphics
library (written for his/her chosen MCU family), along
with some reasonable demo programs, he/she would likely
give up in despair if they had to “start from scratch”. Once
you get going however, the low price of the EVE displays,
along with its very powerful architecture, makes it well
worth the effort.

My Introduction to EVE-based
Displays
At the start, I carefully read the “preliminary” datasheet

[1] that FTDI published at the same time as their early
advertisements. This datasheet made everything look
very simple. However, all of their examples appeared to
be written in a “pseudo-code” of sorts: i.e. all commands
seemed to be simple “English” phrases. They also referred
to various function calls which seemed to be taken from a
C driver library, which was not yet available to the public.
So, I delayed purchasing any actual display modules for a
few months until the more comprehensive Programmer's
Guide became available [1] . At the same time that this
guide (with a “draft” watermark) was published, FTDI
also released a software package for the Arduino, with
drivers and example programs. While I am much more
comfortable using Bascom/AVR for Atmel AVR MCUs, I
did have some experience writing/understanding Arduino
“sketches” (which the Arduino IDE basically surrounds
with a “wrapper” to simplify things for newbie users, and
then passes on to a C/C++ compiler) . With at least some
software available, I decided it was time to order some
actual hardware. At that time, I chose the only modules
available: Mikroelektronika's 4.3” Connect-EVE displays.
Once the display modules arrived, I had a few choices on
how to use them with the AVR MCUs that I customarily
use in my projects. One obvious choice was to further
investigate the Arduino software package created by
FTDI themselves, as referred to in their datasheet and
application notes.

Another choice was to use Mikroelektronika's own
software which supports EVE-based displays. They sell
compilers of various types (C, Basic and Pascal) targeted
at several different MCU families (AVR, PIC and ARM).
Associated with all of these compilers is their Visual TFT
software package, which provides a high-level interface to
many types of TFT displays, including their own Connect-
EVE display module.Mikroelektronika had been very
generous in providing me (being an electronics author)
with a compiler of my choosing, at no charge. I had chosen
their AVR Basic compiler as well as the Visual TFT package.
So, I decided to try this first.

The basic concept behind the Visual TFT package is that
you select the MCU development board that you have, as
well as the type of TFT display module that you wish to
use. Then you start out with a “clean slate”, so to speak,
and drag/drop the various graphics elements you need
onto a “virtual screen” contained within Visual TFT's IDE.
If you have used Microsoft Visual Basic or Visual C++, then
this GUI-based drag-drop method of programming will be
familiar to you. Once you have done this, Visual TFT will
generate the source code needed to implement your screen
(or multiple screens if needed). Next you will be transferred
to whatever Mikroelektronika compiler you are using. Here
you would add your own code to handle all non-display
aspects of your program. Also, the code needed to handle
the various touch screen actions can be done either in
Visual TFT, or later in the compiler itself. Then you “build”
the program, and upload it to your MCU.

Although I did not own any Mikroelektronika MCU

SVET ELEKTRONIKE 9 www.svet-el.si/englishwww.svet-el.si/english

PROGRAMMING

development boards, I picked their XMEGA development
board from the list, since I had an Atmel XMEGA Xplained
board on hand. Having had prior experience with the Xmega
Xplained board, I knew which of the 4 SPI ports available
on the XMEGA devices, was accessible on the Xplained
board's header socket. It turns out that Mikroelektronika's
Xmega board used a different SPI port. After quite a bit of
searching, I found the spot in the Visual TFT source code
where the SPI port was defined and initialized, and made
the necessary changes to some global definitions. After
doing this, I was able to upload a very simple program
to the Xmega Xplained board/Connect-EVE display, and
everything worked fine. So far so good!

The next thing I did was to examine the source code
generated by Visual TFT, to see if I could understand it
enough to be able to integrate their code into whatever
code I would be writing myself. Also, I had to determine
how to make Visual TFT/Mikroelektronika AVR Basic
compiler generate code that would work on the actual AVR
devices that I commonly use (Mega 88, 328, 644, 1284
etc.). This is where I hit “a brick wall”.

It seems like Mikroelektronika first developed C compilers
for the various MCU families and then went on to expand
into Pascal and Basic. However, being so familiar with
both Bascom/AVR and Visual Basic (PC), I found the
syntax and conventions used by Mikroelektronika's Basic
compiler to be quite different and confusing. To me, the
code generated by Visual TFT looked more like C++ than
Basic, and I struggled to follow it.

The Visual TFT program has to be able to generate code
for both “intelligent” TFT displays (i.e. EVE) and many
different types of “dumb” displays (as mentioned at ,the
start of the article). As such, I believe it is generating
non-optimal (and hard-to decipher) code. I think this is
particularly true in the case of EVE-based displays. The
fact that it is called upon to generate code in three different
compiler languages, for a large number of MCUs in the
PIC, AVR and ARM families contributes to making the
code much more complex than it need be, in my opinion.
To back up this observation, I found that a very simple
Visual TFT demo program containing only a few buttons
on the screen (with NO code in the handling routines
for those button presses), generated a 40 Kilobyte AVR
program. This is far too big to fit into the flash memory
of an Arduino Uno's Mega328. In contrast, I have since
written a pretty complicated Arduino sketch, containing
a fairly sophisticated GUI (keypads, buttons & X-Y graphs
etc.) and lots of code to handle several other peripheral
chips. This sketch takes up only about 26K of Flash memory
on a Mega328.

I don't mean to paint an unflattering picture of
Mikroelektronika's software products, based solely on
my own personal experience. If C++ is your main MCU
development language, then you would probably be happy
with Visual TFT and Mikroelektronika's C compilers.
Since most of the EVE demo programs supplied by

Mikroelektronika were written in C for the PIC MCU family,
I did not find it very helpful personally.

FTDI Drivers and Demos
Given the problems described in the previous section, I
next decided to try FTDI's own Arduino driver/demo code
for the Arduino [3]. I was able to compile FTDI's Arduino
demo program easily enough using V1.5 of the Arduino
IDE that I use (I'm sure V1.05 would work as well). It would
have been nice had I been able to load the code directly
into either the Arduino Uno or Mega2560 boards that I
had on hand. However, since the Connect-EVE display
module will only work on a 3.3V power supply, using
3.3V logic levels, neither of these 5V logic-level Arduino
boards would work. So I wired the Connect-EVE up to a
home-built circuit board containing a Atmega328. While
this board ran the 'Mega328 at 5V, there was plenty of
space on the board to add both a 3.3V regulator, and the
necessary level-shifting circuitry. The simple resistive level-
shifter that I used is shown in Figure 1.

After I loaded the FTDI Arduino demo program into the
Mega328, I did not initially see anything appearing on
the display. I was a bit surprised, as I had connected the
Connect-EVE module up exactly as shown in FTDI AN
246 [3], which is the application note which accompanies
this demo program. A lesson: don't stop reading this
application note after you get to the wiring diagram, like I
did! It turns out that later on in the app. note, it instructs
you to define your screen size in the program. The Connect-
EVE's 4.3” screen was the default, so I was OK there. But
more importantly it tells you to un-comment one of the five
lines which define which set of demo routines that you want
to run. This demo program contains a lot of different demo
functions, and an Arduino Uno (with a 'mega328) would
not have nearly enough flash memory to hold this program
if more than one of these sets of routines was included. By
default, all of these 5 lines are commented-out, so, until
you choose one line to un-comment, your program will
compile OK, but nothing will appear on the screen! After
my oversight was corrected, the program ran as designed,
and the Connect-EVE display went through a set of demo
routines. It was quite impressive. Success at last.

Of course, I had already gotten the Connect-EVE to work
using a simple program compiled by the Mikroelektronika
compiler and Visual TFT, only to find I couldn't follow the
code it generated. To be honest, when I first examined the
code in the FTDI Arduino sample program, I was similarly
unable to make much sense of it. To begin with, it wasn't
written using the normal syntax of an Arduino sketch, but
rather as a C++ program. Also, where an Arduino sketch is
generally quite easy-to-follow, with all of the complexities
of the hardware driver hidden in an Arduino “class” library,
this demo program did not define an “EVE” class at all.

To make things even more confusing (to a newbie), the C++
demo program was written to work with either an Arduino
board a PC computer interfaced to the EVE's SPI interface

10 SVET ELEKTRONIKE www.svet-el.si/englishwww.svet-el.si/english

PROGRAMMING

via an FTDI USB interface chip programmed in the MPSSE
mode (Multi-protocol Synchronous Serial Engine)

As a result, the program was full of compiler directives
meant to instruct the compiler to generate code for
whichever of the above options was chosen. This basically
made the listing at least twice as long as it would have been
for just the Arduino alone. That, combined with the fact
that the demo program contained such a large number of
different demo functions, made it hard for me (with C++
being my “third language”) to follow.

What I have done is go through all of the code and remove
all of the conditionally-compiled code specific to the PC
environment (#2 above). Then I further removed all of
the “fancy” screen demos that were not necessary for a
simple application. The resulting code is easier to follow,
and makes it somewhat easier for a newbie to get started.
For reference, this simple program, which initializes the
screen, puts up a few buttons, text, etc takes up about 6K
of AVR code. As I mentioned earlier, a pretty complex GUI
program that I've subsequently written, takes only about
26K of Flash memory on a 'mega328. You can certainly do
some complex programs with this EVE display, even with
an MCU as modest as that used in an Arduino Uno. This

basic program will be included with Part 2 of this multi-
part EVE article series.

In the next part of the article, I'll be covering some of the
basic EVE functions that you will want to use, such as Text,
lines, boxes, etc. I'll also cover some of the most useful
widgets, such as the buttons, and how to draw graphs, etc.
I'll also look at the Mikroelektronika Connect-EVE display
module in more depth.

References

• [1] EVE FT800 Datasheet
◊ http://www.ftdichip.com/Support/Documents/

DataSheets/ICs/DS_FT800.pdf
• [2] EVE FT800 Programmer's Guide

◊ http://www.ftdichip.com/Support/Documents/
ProgramGuides/FT800%20Programmers%20
Guide.pdf

• [3] AN_246 VM800CB SampleApp_Arduino_
Introduction
◊ http://www.ftdichip.com/Support/Documents/

AppNotes/AN_246%20VM800CB_SampleApp_
Arduino_Introduction.pdf

www.svet-el.si/englishwww.svet-el.si/english

